Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ PLoS ONEarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PLoS ONE
Article . 2016 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PLoS ONE
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PLoS ONE
Article . 2017
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2016
License: CC BY
Data sources: PubMed Central
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PLoS ONE
Article . 2016
Data sources: DOAJ
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Identification of a Novel Inhibitory Allosteric Site in p38α

Authors: Patricia Gomez-Gutierrez; Pedro M Campos; Miguel Vega; Juan J Perez;

Identification of a Novel Inhibitory Allosteric Site in p38α

Abstract

In the present study, we report the discovery of a novel allosteric inhibitory site for p38α, a subclass of the mitogen-activated protein kinases (MAPK) family. The putative site was discovered after inspection of the crystallographic structure of the p38α-MK2 complex. MK2 (MAPK-activated protein kinase 2) is an interesting protein playing a dual role as modulator and substrate of p38α. This intriguing behavior is due to the ability of the two proteins to form distinctive heterodimers when p38α is phosphorylated or not. We hypothesized that the regulatory action of MK2 is due to its capability to keep p38α in an inactive conformation and consequently, we investigated the atomic structure of the p38α-MK2 complex to understand such regulatory behavior at the molecular level. After inspection of the complex structure, two peptides designed from the MK2 regulatory loop in contact with p38α with sequences Tyr1-Ser2-Asn3-His4-Gly5-Leu6 (peptide-1) and [Phe0]-peptide-1 (peptide-2) in their zwitterionic form were investigated for their phosphorylation inhibitory capability in vitro. Since both peptides exhibited inhibitory capability of the p38α kinase mediated phosphorylation of MEF2A, in a subsequent step we pursued the discovery of small molecule peptidomimetics. For this purpose we characterized in detail the peptide-p38α interaction using molecular dynamics simulations, leading to the definition of a pharmacophore for the peptide-protein interaction. This hypothesis was used as query for a in silico screening, leading to the discovery of a fused ring compound with micromolar inhibitory activity. Site-directed mutagenesis studies support that the compound binds to the putative novel allosteric site in p38α.

Keywords

Binding Sites, Science, Q, R, Intracellular Signaling Peptides and Proteins, Molecular Dynamics Simulation, Protein Serine-Threonine Kinases, Crystallography, X-Ray, Protein Structure, Tertiary, Mitogen-Activated Protein Kinase 14, Medicine, Humans, Amino Acid Sequence, Phosphorylation, Protein Kinase Inhibitors, Allosteric Site, Research Article, Protein Binding

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    12
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
12
Top 10%
Average
Average
Green
gold