Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ PLoS ONEarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PLoS ONE
Article . 2016 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PLoS ONE
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PLoS ONE
Article . 2016
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2016
License: CC BY
Data sources: PubMed Central
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PLoS ONE
Article . 2016
Data sources: DOAJ
versions View all 4 versions
addClaim

The Odocoileus virginianus Femur: Mechanical Behavior and Morphology

Authors: Mark J Hedgeland; Morgan A Libruk; Nicole C Corbiere; Mario J Ciani; Laurel Kuxhaus;

The Odocoileus virginianus Femur: Mechanical Behavior and Morphology

Abstract

Biomechanical research relies heavily on laboratory evaluation and testing with osseous animal structures. While many femora models are currently in use, including those of the European red deer (Cervus elaphus), the Odocoileus virginianus femur remains undocumented, despite its regional abundance in North America. The objective of this study was to compare biomechanical and morphological properties of the Odocoileus virginianus femur with those of the human and commonly used animal models. Sixteen pairs of fresh-frozen cervine femora (10 male, 6 female, aged 2.1 ± 0.9 years) were used for this study. Axial and torsional stiffnesses (whole bone) were calculated following compression and torsion to failure tests (at rates of 0.1 mm/sec and 0.2°/sec). Lengths, angles, femoral head diameter and position, periosteal and endosteal diaphyseal dimensions, and condylar dimensions were measured. The results show that the cervine femur is closer in length, axial and torsional stiffness, torsional strength, and overall morphology to the human femur than many other commonly used animal femora models; additional morphological measurements are comparable to many other species' femora. The distal bicondylar width of 59.3mm suggests that cervine femora may be excellent models for use in total knee replacement simulations. Furthermore, the cervine femoral head is more ovoid than other commonly-used models for hip research, making it a more suitable model for studies of hip implants. Thus, with further, more application-specific investigations, the cervine femur could be a suitable model for biomechanical research, including the study of ballistic injuries and orthopaedic device development.

Keywords

Male, Science, Deer, Q, R, Torsion, Mechanical, Biomechanical Phenomena, Models, Animal, Medicine, Animals, Humans, Female, Diaphyses, Femur, Femoral Fractures, Research Article

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    6
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
6
Average
Average
Average
Green
gold