
During the stationary part of neuronal spiking response, the stimulus can be encoded in the firing rate, but also in the statistical structure of the interspike intervals. We propose and discuss two information-based measures of statistical dispersion of the interspike interval distribution, the entropy-based dispersion and Fisher information-based dispersion. The measures are compared with the frequently used concept of standard deviation. It is shown, that standard deviation is not well suited to quantify some aspects of dispersion that are often expected intuitively, such as the degree of randomness. The proposed dispersion measures are not entirely independent, although each describes the interspike intervals from a different point of view. The new methods are applied to common models of neuronal firing and to both simulated and experimental data.
Neurons, Science, Q, R, Normal Distribution, Computational Biology, Models, Biological, Olfactory Receptor Neurons, Rats, Medicine, Animals, Research Article
Neurons, Science, Q, R, Normal Distribution, Computational Biology, Models, Biological, Olfactory Receptor Neurons, Rats, Medicine, Animals, Research Article
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 14 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
