
pmid: 19498649
A vertically-stacked multi-ring resonator (VMR), which is a sequence of ring resonators stacked on top of each other, is investigated. The light in the VMR propagates horizontally in the plane of rings and at the same time propagates vertically between the adjacent rings due to evanescent coupling. If fabricated, the VMR may be advantageous compared to the conventional planar arrangement of coupled rings due to its dramatic compactness and more flexible transmission characteristics. In this paper, the uniform VMR, which consists of N rings coupled to the input and output waveguides, is studied. The uniform VMR is a 3D version of a coupled resonator optical waveguide (CROW). Closed analytical expressions for the transmission amplitudes and eigenvalues are obtained by solving coupled wave equations. In the approximation considered, it is shown that, in contrast to the conventional planar ring CROW, a VMR can possess eigenmodes even when interring coupling as well as coupling between rings and waveguides is strong. For the isolated VMR, the eigenvalues of the propagation constant are shown to change linearly with the interring coupling coefficient. The resonance transmission near the VMR eigenvalues is investigated. The dispersion relation of a VMR with an infinite number of rings is found. For weak coupling, the VMR dispersion relation is similar to that of a planar ring CROW (leading, however, to a much smaller group velocity), while for stronger coupling, a VMR does not possess bandgaps.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 29 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
