
pmid: 19474956
Quantum optical coherence tomography (QOCT) makes use of an entangled twin-photon light source to carry out axial optical sectioning. We have probed the longitudinal structure of a sample comprising multiple surfaces in a dispersion-cancelled manner while simultaneously measuring the group-velocity dispersion of the interstitial media between the reflecting surfaces. The results of the QOCT experiments are compared with those obtained from conventional optical coherence tomography (OCT).
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 63 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
