Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Optics Lettersarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Optics Letters
Article . 2023 . Peer-reviewed
Data sources: Crossref
Optics Letters
Article . 2023
versions View all 2 versions
addClaim

Dynamic non-uniform phase shift measurement via Doppler frequency shift in vortex interferometer

Authors: Jingtao Dong; Zhipeng Tian; Shuo Wang; Liyuan Xie; Yangyang Li; Enxi Zhao;

Dynamic non-uniform phase shift measurement via Doppler frequency shift in vortex interferometer

Abstract

A vortex beam interferometer based on Doppler frequency shift is proposed to retrieve the dynamic non-uniform phase shift from the petal-like fringes produced by the coaxial superposition of high-order conjugated Laguerre–Gaussian modes. Unlike the uniform phase shift measurement in which the petal-like fringes rotate as a whole, the fringes due to the dynamic non-uniform phase shift rotate at different angles at different radii, resulting in highly twisted and stretched petals; this hinders rotation angle identification and phase retrieval via image morphological operation. To address the problem, a rotating chopper combined with a collecting lens and a point photodetector are placed at the exit of the vortex interferometer to introduce a carrier frequency in the absence of the phase shift. Once the phase starts to shift non-uniformly, the petals at different radii generate different Doppler frequency shifts, owing to their different rotation velocities. Thus, identification of spectral peaks near the carrier frequency immediately indicates the rotation velocities of the petals and the phase shifts at those radii. The results verified a relative error of phase shift measurement to be within 2.2% at the surface deformation velocities of 1, 0.5, and 0.2 µm/s. The method manifests itself to have potential in exploiting mechanical and thermophysical dynamics from the nanometer to micrometer scale.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    6
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
6
Top 10%
Average
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!