
doi: 10.1364/ol.483817
pmid: 36857261
In this Letter, an ultracompact terahertz (THz) mode division multiplexer based on THz spoof surface plasmon polaritons (SPPs) is proposed. Compared with traditional optical multiplexing devices, the proposed mode multiplexer can be designed with a reduced footprint by exploiting more degrees of freedom in the parameters of the unit cell, namely a rectangular metallic pillar. The ultracompact mode division multiplexer can simultaneously support the propagation of four mode channels: the TM0, TM1, TM2, and TM3 modes. Then, we numerically evaluate the performance of a cascaded plasmonic mode division circuit composed of a mode multiplexer and demultiplexer. The cross talk and excess loss of the whole circuit are lower than –15 dB and 3.7 dB, respectively, for all four mode channels at a center frequency of 0.65 THz. The footprint of the whole device is about 27 × 2.3 mm and the length of each coupling region is about 2.7 mm. For the first time, to the best of our knowledge, a mode division multiplexer based on THz spoof SPPs is reported, which will form core devices for future THz on-chip multimode communication systems.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 3 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
