
It has long been thought that normal group-velocity dispersion (GVD) cannot be produced in free space via angular dispersion. Indeed, conventional diffractive or dispersive components such as gratings or prisms produce only anomalous GVD. We identify the conditions that must be fulfilled by the angular dispersion introduced into a plane-wave pulse to yield normal GVD. We then utilize a pulsed-beam shaper capable of introducing arbitrary angular-dispersion profiles to symmetrically produce normal and anomalous GVD in free space, which are realized here on the same footing for the first time, to our knowledge.
FOS: Physical sciences, Physics - Optics, Optics (physics.optics)
FOS: Physical sciences, Physics - Optics, Optics (physics.optics)
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 13 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
