
We describe a fiber ring resonator comprised of a relatively long loop of standard single-mode fiber with a short nanofiber segment. The evanescent mode of the nanofiber segment allows the cavity-enhanced field to interact with atoms in close proximity to the nanofiber surface. We report on an experiment using a warm atomic vapor and low-finesse cavity, and briefly discuss the potential for reaching the strong coupling regime of cavity QED by using trapped atoms and a high-finesse cavity of this kind.
3 pages, 3 figures
Quantum Physics, FOS: Physical sciences, Quantum Physics (quant-ph), Physics - Optics, Optics (physics.optics)
Quantum Physics, FOS: Physical sciences, Quantum Physics (quant-ph), Physics - Optics, Optics (physics.optics)
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 11 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
