
We propose and demonstrate a new approach, to the best of our knowledge, for avoiding nonlinear effects in the amplification of ultrashort optical pulses. The initial pulse is divided longitudinally into a sequence of lower-energy pulses that are otherwise identical to the original, except for the polarization. The low-intensity pulses are amplified and then recombined to create a final intense pulse. This divided-pulse amplification complements techniques based on dispersion management.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 144 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 1% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
