
doi: 10.1364/oe.478516
pmid: 36785150
We present an implantable metaverse featuring retinal prostheses in association with bionic vision processing. Unlike conventional retinal prostheses, whose electrodes are spaced equidistantly, our solution is to rearrange the electrodes to match the distribution of ganglion cells. To naturally imitate the human vision, a scheme of bionic vision processing is developed. On top of a three-dimensional eye model, our bionic vision processing is able to visualize the monocular image, binocular image fusion, and parallax-induced depth map.
Bionics, Visual Perception, Humans, Electrodes, Vision, Ocular, Visual Prosthesis
Bionics, Visual Perception, Humans, Electrodes, Vision, Ocular, Visual Prosthesis
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 6 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
