Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Optics Expressarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Optics Express
Article . 2022 . Peer-reviewed
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://dx.doi.org/10.48550/ar...
Article . 2022
License: CC BY NC SA
Data sources: Datacite
DBLP
Article
Data sources: DBLP
versions View all 5 versions
addClaim

Single pixel imaging at high pixel resolutions

Authors: Rafał Stojek; Anna Pastuszczak; Piotr Wróbel; Rafał Kotyński;

Single pixel imaging at high pixel resolutions

Abstract

The usually reported pixel resolution of single pixel imaging (SPI) varies between 32 × 32 and 256 × 256 pixels falling far below imaging standards with classical methods. Low resolution results from the trade-off between the acceptable compression ratio, the limited DMD modulation frequency, and reasonable reconstruction time, and has not improved significantly during the decade of intensive research on SPI. In this paper we show that image measurement at the full resolution of the DMD, which lasts only a fraction of a second, is possible for sparse images or in a situation when the field of view is limited but is a priori unknown. We propose the sampling and reconstruction strategies that enable us to reconstruct sparse images at the resolution of 1024 × 768 within the time of 0.3s. Non-sparse images are reconstructed with less details. The compression ratio is on the order of 0.4% which corresponds to an acquisition frequency of 7Hz. Sampling is differential, binary, and non-adaptive, and includes information on multiple partitioning of the image which later allows us to determine the actual field of view. Reconstruction is based on the differential Fourier domain regularized inversion (D-FDRI). The proposed SPI framework is an alternative to both adaptive SPI, which is challenging to implement in real time, and to classical compressive sensing image recovery methods, which are very slow at high resolutions.

Related Organizations
Keywords

FOS: Computer and information sciences, Computer Vision and Pattern Recognition (cs.CV), Image and Video Processing (eess.IV), Computer Science - Computer Vision and Pattern Recognition, FOS: Electrical engineering, electronic engineering, information engineering, FOS: Physical sciences, Electrical Engineering and Systems Science - Image and Video Processing, Physics - Optics, Optics (physics.optics)

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    14
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
14
Top 10%
Top 10%
Top 10%
Green
gold