Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Optics Expressarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Optics Express
Article . 2022 . Peer-reviewed
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

Retrieval of the planetary boundary layer height from lidar measurements by a deep-learning method based on the wavelet covariance transform

Authors: Liang, Mei; Xiaoqi, Wang; Zhenfeng, Gong; Kun, Liu; Dengxin, Hua; Xiaona, Wang;

Retrieval of the planetary boundary layer height from lidar measurements by a deep-learning method based on the wavelet covariance transform

Abstract

Understanding and characterization of the planetary boundary layer (PBL) are of great importance in terms of air pollution management, weather forecasting, modelling of climate change, etc. Although many lidar-based approaches have been proposed for the retrieval of the PBL height (PBLH) in case studies, development of a robust lidar-based algorithm without human intervention is still of great challenging. In this work, we have demonstrated a novel deep-learning method based on the wavelet covariance transform (WCT) for the PBLH evaluation from atmospheric lidar measurements. Lidar profiles are evaluated according to the WCT with a series of dilation values from 200 m to 505 m to generate 2-dimensional wavelet images. A large number of wavelet images and the corresponding PBLH-labelled images are created as the training set for a convolutional neural network (CNN), which is implemented based on a modified VGG16 (VGG – Visual Geometry Group) convolutional neural network. Wavelet images obtained from lidar profiles have also been prepared as the test set to investigate the performance of the CNN. The PBLH is finally retrieved by evaluating the predicted PBLH-labelled image and the wavelet coefficients. Comparison studies with radiosonde data and the Micro-Pulse-Lidar Network (MPLNET) PBLH product have successfully validated the promising performance of the deep-learning method for the PBLH retrieval in practical atmospheric sensing.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    6
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
6
Top 10%
Average
Top 10%
gold