
doi: 10.1364/oe.452610
pmid: 35473061
The orbital angular momentum (OAM) holography has been identified as a vital approach for achieving ultrahigh-capacity multiplexation without a theoretical helical phase index limit. However, the encoding and decoding of an OAM hologram require a complete helical phase mode, which does not take full utilization of the angular space. In this paper, the partial OAM holography is proposed by dividing an OAM mode into several partial orbital angular momentums and encode each partial mode with a different target image. An image can only be reconstructed using an appropriate partial OAM mode within a specific illuminating angular range, henceforth holographic multiplexation of images can be realized. This method can significantly increase the holographic information capacity and find widespread applications.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 20 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
