
doi: 10.1364/oe.448132
pmid: 35209517
Jerk is directly related to a physical mutation process of structural damage and human comfort. A fiber optic jerk sensor (FOJS) based on a fiber optic differentiating Mach–Zehnder interferometer is proposed. It can directly measure jerk by demodulating the phase of interference light, which avoids the high-frequency noise interference caused by differentiating the acceleration. The sensing theory and sensor design are given in detail. The experimental and theoretical results agree, demonstrating that the FOJS has a high sensitivity, an ultralow phase noise floor, a wide measuring range, and good linearity. The impact test shows that the FOJS can directly measure jerk and has good consistency with a standard piezoelectric accelerometer. The FOJS has potential applications in earthquake engineering, comfort evaluations, and railway design. This is the first time that directly measuring jerk with an optical sensor is reported.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 8 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
