
We use convolutional neural networks to recover images optically down-sampled by 6.7 × using coherent aperture synthesis over a 16 camera array. Where conventional ptychography relies on scanning and oversampling, here we apply decompressive neural estimation to recover full resolution image from a single snapshot, although as shown in simulation multiple snapshots can be used to improve signal-to-noise ratio (SNR). In place training on experimental measurements eliminates the need to directly calibrate the measurement system. We also present simulations of diverse array camera sampling strategies to explore how snapshot compressive systems might be optimized.
Image and Video Processing (eess.IV), FOS: Electrical engineering, electronic engineering, information engineering, FOS: Physical sciences, Electrical Engineering and Systems Science - Image and Video Processing, Physics - Optics, Optics (physics.optics)
Image and Video Processing (eess.IV), FOS: Electrical engineering, electronic engineering, information engineering, FOS: Physical sciences, Electrical Engineering and Systems Science - Image and Video Processing, Physics - Optics, Optics (physics.optics)
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 17 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
