
doi: 10.1364/oe.392011
pmid: 32549488
We present a theoretical study on the plasmonic response of borophene, a monolayer 2D material that is predicted to exhibit metallic response and anisotropic plasmonic behavior in visible wavelengths. We investigate plasmonic properties of borophene thin films as well as borophene nanoribbons and nanopatches where polarization-sensitive absorption values in the order of 50% is obtained with monolayer borophene. It is demonstrated that by adding a metal layer, this absorption can be enhanced to 100%. We also examine giant dichroism in monolayer borophene which can be tuned passively (patterning) and actively (electrostatic gating) and our simulations yield 20% reflected light with significant polarization rotation. These findings reveal the potential of borophene in the manipulation of phase, amplitude and polarization of light at the extreme subwavelength scales.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 47 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% |
