
doi: 10.1364/oe.25.020156
pmid: 29041699
Single-photon interference experiments are attempted in the time domain using true single-photon streams. Self-heterodyning beats are clearly observed by letting the field associated with a single photon interfere with itself on a field-quadratic detector, which is a time analogue of Young's two-slit interference experiment. The temporal first-order coherence of single-photon fields, i.e., transient interference fringes, develops as cumulative detection events are mapped point-by-point onto a virtual capture frame by properly correlating the time-series data. The ability to single out photon counts at a designated timing paves the way for digital heterodyning with faint light for such use as phase measurement and quantum information processing.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 6 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
