
doi: 10.1364/oe.16.007244
pmid: 18545429
In this work, we present a method providing real-time, low cost, three-dimensional imaging in a three-dimensional optical micromanipulation system. The three-dimensional imaging system is based on a small form factor LED based projector. The projector is used to dynamically shape the rear illumination light in a counter-propagating beam-trapping setup. This allows us to produce stereoscopic images, from which the human brain can construct a three-dimensional image, or alternatively image analysis can be applied by a computer, thereby obtaining true three-dimensional coordinates in real-time for the trapped objects.
Diagnostic Imaging, Models, Statistical, Light, Brain, Equipment Design, Automation, Micromanipulation, Imaging, Three-Dimensional, Calibration, Computer Graphics, Image Processing, Computer-Assisted, Humans, Algorithms
Diagnostic Imaging, Models, Statistical, Light, Brain, Equipment Design, Automation, Micromanipulation, Imaging, Three-Dimensional, Calibration, Computer Graphics, Image Processing, Computer-Assisted, Humans, Algorithms
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 23 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
