
doi: 10.1364/oe.15.014376
pmid: 19550715
We demonstrate a robust and highly responsive optical microsensor, which probes the refractive index of liquids flowing along a ~ 100 mum radius channel formed in a polymer matrix. Sensing is based on measurement of the transmission spectrum of the whispering gallery modes, which are excited across the liquid channel by an optical microfiber imbedded into the polymer. The achieved sensitivity is 800 nm/RIU. Potentially, it is straightforward to assemble the sensing elements of this type into a lab-on-the-chip imbedded in a solidified optical material.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 154 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 1% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% |
