
pmid: 19529484
handle: 1959.3/5292
This paper describes the direct write laser fabrication of a photolithography mask for prototyping of microfluidic devices in polydimethylsiloxane. An amplified femtosecond pulse laser is used to selectively remove the aluminium metal layer from the poly(methyl methacrylate) photomask substrate. The use of a femtosecond pulse laser to selectively etch a metal layer has several advantages over other conventional methods for binary photomask fabrication, namely rapid prototyping of microfluidic devices using soft lightography. Control of the energy density and defocus position of the focusing objective lens results in the etching of features with widths ranging from 2 µm to 35 µm when using an objective lens with a numerical aperture of 0.25.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 9 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
