
We present a new class of artificial materials which exhibit a tailored response to the electrical component of electromagnetic radiation. These electric metamaterials (EM-MMs) are investigated theoretically, computationally, and experimentally using terahertz time-domain spectroscopy. These structures display a resonant response including regions of negative permittivity (epsilon < 0) ranging from ~500 GHz to 1 THz. Conventional electric media such as distributed wires are difficult to incorporate into metamaterials. In contrast, these new localized structures will simplify the construction of future metamaterials - including those with negative index of refraction - and will enhance the design and fabrication of functional THz devices.
Condensed Matter - Other Condensed Matter, Condensed Matter - Materials Science, Materials Science (cond-mat.mtrl-sci), FOS: Physical sciences, Other Condensed Matter (cond-mat.other)
Condensed Matter - Other Condensed Matter, Condensed Matter - Materials Science, Materials Science (cond-mat.mtrl-sci), FOS: Physical sciences, Other Condensed Matter (cond-mat.other)
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
