
We investigate photorefractive media for which quasi-stabilized ionic gratings can be used to prolong readout lifetime. We use coupled-transport-mode theory to describe the coevolution of photorefractive gratings that arise from free-electron transport and ionic transport. We evaluate in detail the differences between low-temperature and high-temperature recording for typical conditions required by multiplex holography. We provide general normalized examples for simple diffusion transport and specific examples for photovoltaic LiNbO3. We introduce a common formalism to compare widely varying results present in the literature and to guide the materials and system development processes.
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 5 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
