
The transfer function associated with the Knox–Thompson speckle imaging technique is investigated. Numerical model transfer functions using log-normal statistics for perturbations of the complex wave front, the near-field approximation, and a Kolmogorov spectrum for atmospheric turbulence statistics are presented. Simple approximations for the transfer function are discussed. As with the transfer function of Labeyrie’s speckle interferometry technique, the portion beyond the seeing limit can be represented as the transfer function of an unaberrated telescope times a seeing-dependent constant. An additional factor depends on the frequency shift of the Knox – Thompson cross spectra. The influence of the frequency shift on the reconstructed phase error is discussed for simple reconstruction problems.
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 15 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
