
pmid: 16715147
A method is proposed to reconstruct signals from incomplete data. The method, which can be interpreted both as a discrete implementation of the so-called prior discrete Fourier transform (PDFT) spectral estimation technique and as a variant of the algebraic reconstruction technique, allows one to incorporate prior information about the reconstructed signal to improve the resolution of the signal estimated. The context of diffraction tomography and image reconstruction from samples of the far-field scattering amplitude are used to explore the performance of the method. On the basis of numerical computations, the optimum choice of parameters is determined empirically by comparing image reconstructions of the noniterative PDFT algorithm and the proposed iterative scheme.
Artificial Intelligence, Image Interpretation, Computer-Assisted, Information Storage and Retrieval, Numerical Analysis, Computer-Assisted, Signal Processing, Computer-Assisted, Image Enhancement, Algorithms, Pattern Recognition, Automated
Artificial Intelligence, Image Interpretation, Computer-Assisted, Information Storage and Retrieval, Numerical Analysis, Computer-Assisted, Signal Processing, Computer-Assisted, Image Enhancement, Algorithms, Pattern Recognition, Automated
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 14 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
