
Optical coherence tomography (OCT)-based angiography (OCTA) provides in vivo, three-dimensional vascular information by the use of flowing red blood cells as intrinsic contrast agents, enabling the visualization of functional vessel networks within microcirculatory tissue beds non-invasively, without a need of dye injection. Because of these attributes, OCTA has been rapidly translated to clinical ophthalmology within a short period of time in the development. Various OCTA algorithms have been developed to detect the functional micro-vasculatures in vivo by utilizing different components of OCT signals, including phase-signal-based OCTA, intensity-signal-based OCTA and complex-signal-based OCTA. All these algorithms have shown, in one way or another, their clinical values in revealing micro-vasculatures in biological tissues in vivo, identifying abnormal vascular networks or vessel impairment zones in retinal and skin pathologies, detecting vessel patterns and angiogenesis in eyes with age-related macular degeneration and in skin and brain with tumors, and monitoring responses to hypoxia in the brain tissue. The purpose of this paper is to provide a technical oriented overview of the OCTA developments and their potential pre-clinical and clinical applications, and to shed some lights on its future perspectives. Because of its clinical translation to ophthalmology, this review intentionally places a slightly more weight on ophthalmic OCT angiography.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 350 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 1% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 0.1% |
