
Circulating tumor cell clusters (CTCCs) are significantly more likely to form metastases than single tumor cells. We demonstrate the potential of backscatter-based flow cytometry (BSFC) to detect unique light scattering signatures of CTCCs in the blood of mice orthotopically implanted with breast cancer cells and treated with an anti-ADAM8 or a control antibody. Based on scattering detected at 405, 488, and 633 nm from blood samples flowing through microfluidic devices, we identified 14 CTCCs with large scattering peak widths and intensities, whose presence correlated strongly with metastasis. These initial studies demonstrate the potential to detect CTCCs via label-free BSFC.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 8 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
