Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Applied Opticsarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Applied Optics
Article . 2005 . Peer-reviewed
Data sources: Crossref
Applied Optics
Article . 2006
versions View all 2 versions
addClaim

Parameterized code SHARM-3D for radiative transfer over inhomogeneous surfaces

Authors: Alexei, Lyapustin; Yujie, Wang;

Parameterized code SHARM-3D for radiative transfer over inhomogeneous surfaces

Abstract

The code SHARM-3D, developed for fast and accurate simulations of the monochromatic radiance at the top of the atmosphere over spatially variable surfaces with Lambertian or anisotropic reflectance, is described. The atmosphere is assumed to be laterally uniform across the image and to consist of two layers with aerosols contained in the bottom layer. The SHARM-3D code performs simultaneous calculations for all specified incidence-view geometries and multiple wavelengths in one run. The numerical efficiency of the current version of code is close to its potential limit and is achieved by means of two innovations. The first is the development of a comprehensive precomputed lookup table of the three-dimensional atmospheric optical transfer function for various atmospheric conditions. The second is the use of a linear kernel model of the land surface bidirectional reflectance factor (BRF) in our algorithm that has led to a fully parameterized solution in terms of the surface BRF parameters. The code is also able to model inland lakes and rivers. The water pixels are described with the Nakajima-Tanaka BRF model of wind-roughened water surface with a Lambertian offset, which is designed to model approximately the reflectance of suspended matter and of a shallow lake or river bottom.

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    16
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
16
Average
Top 10%
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!