Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Applied Opticsarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Applied Optics
Article . 2021 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions
addClaim

Image fusion using a multi-level image decomposition and fusion method

Authors: Yu, Tian; Wenjing, Yang; Ji, Wang;

Image fusion using a multi-level image decomposition and fusion method

Abstract

In recent years, image fusion has emerged as an important research field due to its various applications. Images acquired by different sensors have significant differences in feature representation due to the different imaging principles. Taking visible and infrared image fusion as an example, visible images contain abundant texture details with high spatial resolution. In contrast, infrared images can obtain clear target contour information according to the principle of thermal radiation, and work well in all day/night and all weather conditions. Most existing methods employ the same feature extraction algorithm to get the feature information from visible and infrared images, ignoring the differences among these images. Thus, this paper proposes what we believe to be a novel fusion method based on a multi-level image decomposition method and deep learning fusion strategy for multi-type images. In image decomposition, we not only utilize a multi-level extended approximate low-rank projection matrix learning decomposition method to extract salient feature information from both visible and infrared images, but also apply a multi-level guide filter decomposition method to obtain texture information in visible images. In image fusion, a novel fusion strategy based on a pretrained ResNet50 network is presented to fuse multi-level feature information from both visible and infrared images into corresponding multi-level fused feature information, so as to improve the quality of the final fused image. The proposed method is evaluated subjectively and objectively in a large number of experiments. The experimental results demonstrate that the proposed method exhibits better fusion performance than other existing methods.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    13
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
13
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!