
doi: 10.1364/ao.36.000718
pmid: 18250730
We have studied the time-dependent properties of a chirped short pulse when the pulse is scattered by a spherical particle. We used generalized Lorentz-Mie formulas to study the scattered electrical field and pulse distortion. Plane wave Gaussian pulses of different chirps with a constant pulse-filling coefficient l(0) = 1.98 have been studied. A morphology-dependent resonance causes a prolonged trailing edge (small scattering angle) and oscillations (large scattering angle) in the scattered pulse. When frequency sweeping superimposes on a morphology-dependent resonance, the pulse chirp affects the scattered pattern and distorts the scattered intensity. Multisecondary pulses are generated because of the pulse chirp and even subsecondary pulses occur if the incident pulse is deeply chirped. The pulse widths of secondary and subsecondary pulses are shorter than those of an incident pulse.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 3 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
