
Artificial index gratings, which are composed of binary microstructures of sizes less than the incident wavelength, are analyzed as functions of the filling factor or duty cycle of the microstructures. Different models for calculating the optimum duty cycles to produce high blazed diffraction efficiency are compared. Blazed binary grating designs in a material with a refractive index n = 2 show theoretical diffraction efficiencies as high as η = 80%. In the semiconductor material silicon, which has a refractive index n = 3.4, theoretical diffraction efficiencies as high as η = 70% are predicted.
Diffraction gratings, Microstructure
Diffraction gratings, Microstructure
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 25 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
