
We investigate scaling with the cross-sectional area of energy and speed for optical devices and of optical design, speed, and thermal dissipation for device arrays. Theory and experiments clearly point to lower energy and faster speed for smaller devices and to simpler optical design, smaller propagation time delays, and higher thermal dissipation capability for smaller array sizes. We conclude that the development of high speed digital optical processors will depend on small devices interconnected by microoptic systems.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 5 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
