Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Evolutionary Biology Redux

Authors: John S. Torday;

Evolutionary Biology Redux

Abstract

This article offers a novel, enlightened concept for determining the mechanism of evolution. It is based on homeostasis, which distinguishes life from non-life and as such is the universal mechanism for the evolution of all living organisms. This view of evolution is logical, mechanistic, non-scalar, predictive, testable, and falsifiable, and it illuminates the epistemological relationships between physics and biology, ontogeny and phylogeny, development and aging, ultimate and proximate causation, health and disease. In addition to validating Haeckel’s biogenetic law and Lamarckian epigenetics, reflecting the enabling value of the cellular approach, this perspective also expresses the evolutionary process at the cell-molecular level, since the mechanism of cell communication itself is universal in biology, in keeping with a Kuhnian paradigm shift. This approach may even elucidate the nature and evolution of consciousness as a manifestation of the cellular continuum from unicellular to multicellular life. We need such a functional genomic mechanism for the process of evolution if we are to make progress in biology and medicine. Like Copernican heliocentrism, a cellular approach to evolution may fundamentally change humankind’s perceptions about our place in the universe.

Related Organizations
Keywords

Aging, Cell Communication, Biological Evolution, Models, Biological, Gene Expression Regulation, Animals, Homeostasis, Humans, Selection, Genetic, Phylogeny, Signal Transduction

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    39
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
39
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author? Do you have the OA version of this publication?