Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Tilburg University R...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ResearchGate Data
Conference object . 2014
Data sources: Datacite
versions View all 2 versions
addClaim

Improving Air-to-Air Combat Behavior Through Transparent Machine Learning

Authors: Toubman, A.; Roessingh, Jan Joris; Spronck, P.H.M.; Plaat, A.; van den Herik, H.J.;

Improving Air-to-Air Combat Behavior Through Transparent Machine Learning

Abstract

Training simulations, especially those for tactical training, require properly behaving computer generated forces (CGFs) in the opponent role for an effective training experience. Traditionally, the behavior of such CGFs iscontrolled through scripts. There are two main problems with the use of scripts for controlling the behavior of CGFs: (1) building an effective script requires expert knowledge, which is costly, and (2) costs further increase with thenumber of ‘learning events’ in a scenario (e.g. a new opponent tactic). Machine learning techniques may offer a solution to these two problems, by automatically generating, evaluating and improving CGF behavior. In this paperwe describe an application of the dynamic scripting technique to the generation of CGF behavior for training simulations. Dynamic scripting is a machine learning technique that searches for effective scripts by combining rules from a rule base with predefined behavior rules. Although dynamic scripting was initially developed for artificial intelligence (AI) in commercial video games, its computational and functional qualities are also desirable in military training simulations. Among other qualities, dynamic scripting generates behavior in a transparent manner. Also, dynamic scripting’s learning method is robust: a minimum level of effectiveness is guaranteed through the use of domain knowledge in the initial rule base. In our research, we investigate the application of dynamic scripting for generating behaviors of multiple cooperating aircraft in air-to-air combat. Coordination in multi-agent systems remains a non-trivial problem. We enabled explicit team coordination through communication between team members. This coordination method was tested in an air combat simulation experiment, and compared against a baseline that consisted of a similar dynamic scripting setup, without explicit coordination.In terms of combat performance, the team using the explicit team coordination was 20% more effective than the baseline. Finally, the paper will discuss the application of dynamic scripting in a practical setting.

Country
Netherlands
Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Related to Research communities