Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Withdrawal Capacity of Plain, Annular Shank, and Helical Shank Nail Fasteners in Spruce-Pine-Fir Lumber

Authors: Roberto Lopez-Anido; William G. Davids; Garrett E. Luszczki; Joshua D. Clapp;

Withdrawal Capacity of Plain, Annular Shank, and Helical Shank Nail Fasteners in Spruce-Pine-Fir Lumber

Abstract

Abstract This study examines the withdrawal load and energy capacity of three types of nail fasteners that are commonly used to attach sheathing to framing members: 8d common, annular ring shank, and helical shank. A baseline set of data was collected for single nails in accordance with test methods defined in ASTM D1761. Tests were performed until complete withdrawal occurred in order to quantify the total withdrawal energy. The average peak loads from testing were within 7 to 8 percent of predicted values. The annular and helical nails had much higher peak load capacity as expected, and the withdrawal energy was also greater. A new device was developed in order to subject multiple nails to withdrawal loading simultaneously. Reinforced sheathing was used to transfer load from the hydraulic actuator to the nails, which is more representative of actual structural response where there is load sharing among the nails. This device allowed direct comparison with the single nail results. Further, it also allowed the examination of a “stitched” nailing pattern, where fasteners are driven at alternating angles of ±60° measured from the framing member face. It was found that the stitched pattern resulted in 42 percent higher peak load capacity per fastener for 8d common nails, but for the helical and annular nails, peak load was similar to that achieved with a normal 90° drive angle. Withdrawal energy was 24 to 48 percent higher for all nail types using the stitched pattern.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!