Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Facies and Sequence Stratigraphy

Critical Tools for Reservoir Framework Definition, Fullerton Clear Fork Reservoir, Texas
Authors: Stephen C. Ruppel; Rebecca R. Harrington;

Facies and Sequence Stratigraphy

Abstract

Abstract Clear Fork reservoirs in the Permian Basin typically display a wide range of geologic and petrophysical properties that make the efficient recovery of hydrocarbons difficult. A key step in improving recovery efficiency is defining the patterns of variability in these rocks. The critical elements of variability that must be defined are facies, groupings of rocklike properties; and sequence architecture, the framework of facies variability. As in all carbonate reservoirs, rock-based studies must form a fundamental basis for characterizing and modeling facies and sequence architecture variability through the reservoir. Combined with wireline-log data, they provide a basis for defining both rock attribute distributions and reservoir framework. At Fullerton field, we used 29 cores (>14,000 ft [>4270 m]), well logs from approximately 800 wells, three-dimensional seismic data, and outcrop data to define facies (rock attributes) and sequence stratigraphy (reservoir framework). The Fullerton reservoir section averages 500 ft (152 m) that can be subdivided into three stratigraphic units (Abo, Wichita, and Lower Clear Fork) and parts of two composite and six high-frequency sequences. At the base of the reservoir section, Abo rocks (sequences L1.1 and L1.2) consist of clinoformal, outer-platform, subtidal, fusulinid-crinoid packstones that exhibit locally excellent porosity and permeability characteristics but are highly variable in continuity. Wichita rocks were deposited in peritidal tidal-flat settings and consist of mud-rich facies that generally display poor continuity and commonly very low permeability and oil saturation despite locally high porosity. Wichita rocks (sequences L1.2 and L2.0) are updip inner-platform equivalents of both partly underlying Abo and overlying Lower Clear Fork facies. Lower Clear Fork rocks (sequences L2.1 and L2.2) are dominantly middle-platform subtidal, grain-rich ooid-peloid packstone and grainstone facies that exhibit the best permeability and oil saturation properties. Although basic facies distributions are defined by high-frequency sequence architecture, the reservoir framework must be based on the correlation of higher resolution depositional cycles. Because gamma-ray logs showed little or no relationship to facies and cyclicity, we calibrated porosity logs to cyclicity and used them to define 10 to 15 ft (3 to 5 m) cycles throughout the reservoir.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    6
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
6
Average
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!