
doi: 10.13021/mars/7023
handle: 1920/8781
The vast majority of optically identified active galactic nuclei (AGNs) in the local universe reside in host galaxies with prominent bulges, supporting the hypothesis that black hole formation and growth is fundamentally connected to the buildup of galaxy bulges. However, recent mid-infrared spectroscopic studies with Spitzer of a sample of bulgeless galaxies reveal strong evidence for AGNs in these galaxies. We present follow-up X-ray observations recently obtained with XMM-Newton of two such sources, the late-type optically normal galaxies NGC 3367 and NGC 4536. Detailed spectral analysis reveals that for both galaxies, the 2-10 keV emission is consistent with low-luminosity AGNs. These observations therefore add to the growing evidence that the fraction of late-type galaxies hosting AGNs is significantly underestimated using optical observations alone. A comparison of the mid-infrared [NeV] luminosity and the X-ray luminosities suggests the presence of a highly absorbed X-ray source in both galaxies.
Active galactic nuclei, Interacting galaxies, Bulgeless galaxies, Astrophysics, 520
Active galactic nuclei, Interacting galaxies, Bulgeless galaxies, Astrophysics, 520
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
