Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Bone and ...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

FRACTURES, DISLOCATIONS, AND FRACTURE-DISLOCATIONS OF THE SPINE

Authors: F, Holdsworth;

FRACTURES, DISLOCATIONS, AND FRACTURE-DISLOCATIONS OF THE SPINE

Abstract

Over 1000 patients with traumatic paraplegia or tetraplegia and many more with fractures and dislocations of the spine without damage to the central nervous system have been observed and treated at the Sheffield Spinal Injuries Centre. The vertebral lesions with or without injury to the spinal cord or nerve roots have been classified on the basis of the clinical and roentgenographic findings into five groups: 1. Pure flexion which causes a wedge fracture which is stable. 2. Flexion-rotation which produces an unstable fracture-dislocation with rupture of tue posterior ligament complex, separation of the spinous processes, a slice fracture near the upper border of the lower vertebra, and dislocation of the lower articular processes of the upper vertebra. 3. Extension which causes rupture of the intervertebral disc and the anterior common ligament along with avulsion of a small bone fragment from the anterior border of the dislocated vertebra. The dislocation almost always reduces spontaneously and is stable in flexion. 4. Vertebral compression which results in a fracture of the end plate as the nucleus of the intervertebral disc is forced into the vertebral body and causes it to burst with outward displacement of fragments of the body. Since the ligaments remain intact this comminuted fracture is stable. 5. Shearing which results in forward displacement of the whole vertebra and an unstable fracture of the articular processes or pedicles. Accurate diagnosis and prognosis of the neurological lesion depend on knowledge of the anatomy of the spinal cord and nerve roots, a careful neurological examination shortly after the original injury and repeated examinations thereafter, comparison of the level of spinal injury with the level of paraplegia or tetraplegia, differentiation between paraplegia and tetraplegia of immediate and delayed onset, and the appropriate therapy of the various types and levels of lesion. Simple wedge fractures were treated by bed rest for two to three weeks, mobilization of the back, and ambulation with a back support. Rotational fracture-dislocations in the cervical, thoracolumbar, or lumbar spine were almost invariably associated with tetraplegia or paraplegia. Cervical fracture-dislocations with or without tetraplegia were treated by skull-caliper traction. Thoracolumbar or lumbar fracture-dislocations without paraplegia were treated on a plaster bed for twelve weeks followed by a back support for a few weeks. The thoracolumbar fracture-dislocations with paraplegia were never treated by the plaster bed method but rather by open reduction of the dislocation, and maintenance of the reduction by internal fixation with double plating of the spinous processes. Spontaneous fusion was sufficiently advanced after eight to twelve weeks to get the patient out of bed. If the plates cut out of the bone after twelve weeks, they were removed. Patients with loss of sensation resulting from paraplegia or tetraplegia were turned every two hours to avoid pressure sores. Extension dislocations in the cervical spine, if they had reduced spontaneously, were fitted with a collar to hold the head and neck in sligh flexion for a period of eight to twelve weeks. For dislocations in this region which had not reduced spontaneously, manual manipulation under endotracheal anesthesia was employed. Reduction was maintained by skull tongs applied prior to manipulation. If after four weeks there was roentgenographic evidence of new bone indicating Spontaneous fusion, traction was continued for four to six weeks more followed by a neck collar for an additional six weeks. If new bone did not appear on the roentgenograms after four weeks, anterior fusion was performed followed by skull traction for an additional eight weeks. Vertical compression burst fractures in the cervical spine were treated by skull traction for six weeks followed by a neck collar. In the lumbar spine, burst fractures without paraplegia were treated by immobilization in a plaster bed for eight to twelve weeks followed by back support. The plaster bed was never used in burst fractures with paraplegia. Shear fractures were always associated with complete paraplegia. These fractures were usually stable and did not require operative reduction except when the displacement was great.

Keywords

Neurologic Examination, Paraplegia, Radiography, Fractures, Bone, Fractures, Cartilage, Lumbar Vertebrae, Spinal Injuries, Cervical Vertebrae, Joint Dislocations, Humans, Intervertebral Disc, Spine

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    823
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 0.01%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
823
Top 1%
Top 0.01%
Top 10%
Related to Research communities
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!