
doi: 10.13016/jgwr-bkvx
handle: 1903/21704
Foveated rendering coupled with eye-tracking has the potential to dramatically accelerate interactive 3D graphics with minimal loss of perceptual detail. I have developed a new foveated rendering technique: Kernel Foveated Rendering (KFR), which parameterizes foveated rendering by embedding polynomial kernel functions in log-polar mapping. This GPU-driven technique uses parameterized foveation that mimics the distribution of photoreceptors in the human retina. I present a two-pass kernel foveated rendering pipeline that maps well onto modern GPUs. In the first pass, I compute the kernel log-polar transformation and render to a reduced-resolution buffer. In the second pass, I have carried out the inverse-log-polar transformation with anti-aliasing to map the reduced-resolution rendering to the full-resolution screen. I carry out user studies to empirically identify the KFR parameters and observe a 2.8X-3.2X speedup in rendering on 4K displays. The eye-tracking-guided kernel foveated rendering can resolve the mutually conflicting goals of interactive rendering and perceptual realism.
Computer science, 004
Computer science, 004
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
