
doi: 10.12942/lrsp-2008-2
The Sun, stars similar to it, and many rather dissimilar to it, have chromospheres, regions classically viewed as lying above the brilliant photosphere and characterized by a positive temperature gradient and a marked departure from radiative equilibrium. Stellar chromospheres exhibit a wide range of phenomena collectively called activity, stemming largely from the time evolution of their magnetic fields and the mass flux and transfer of radiation through the complex magnetic topology and the increasingly optically thin plasma of the outer stellar atmosphere. In this review, I will (1) outline the development of our understanding of chromospheric structure from 1960 to the present, (2) discuss the major observational programs and theoretical lines of inquiry, (3) review the origin and nature of both solar and stellar chromospheric activity and its relationship to, and effect on, stellar parameters including total energy output, and (4) summarize the outstanding problems today.
stars, Astronomy, Physics, QC1-999, chromospheres, Sun, QB1-991
stars, Astronomy, Physics, QC1-999, chromospheres, Sun, QB1-991
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 122 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
