<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
The quadratic shortest path problem is the problem of finding a path in a directed graph such that the sum of interaction costs over all pairs of arcs on the path is minimized. We derive several semidefinite programming relaxations for the quadratic shortest path problem with a matrix variable of order $m+1$, where $m$ is the number of arcs in the graph. We use the alternating direction method of multipliers to solve the semidefinite programming relaxations. Numerical results show that our bounds are currently the strongest bounds for the quadratic shortest path problem. We also present computational results on solving the quadratic shortest path problem using a branch and bound algorithm. Our algorithm computes a semidefinite programming bound in each node of the search tree, and solves instances with up to 1300 arcs in less than an hour (!).
Optimization and Control (math.OC), branch and bound, alternating direction method of multipliers, FOS: Mathematics, quadratic shortest path problem, semidefinite programming, Mathematics - Optimization and Control
Optimization and Control (math.OC), branch and bound, alternating direction method of multipliers, FOS: Mathematics, quadratic shortest path problem, semidefinite programming, Mathematics - Optimization and Control
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 15 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |