Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao zbMATH Openarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article . 2006
Data sources: zbMATH Open
INFORMS Journal on Computing
Article . 2006 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A Branch-and-Cut Procedure for the Multimode Resource-Constrained Project-Scheduling Problem

A branch-and-cut procedure for the multimode resource-constrained project-scheduling problem
Authors: Zhu, Guidong; Bard, Jonathan F.; Yu, Gang;

A Branch-and-Cut Procedure for the Multimode Resource-Constrained Project-Scheduling Problem

Abstract

This paper considers the multimode resource-constrained project-scheduling problem (MRCPSP) with a minimum-makespan objective. An exact branch and cut algorithm is presented based on the integer linear programming (ILP) formulation of the problem. In the preprocessing stage, lower bounds on the distance between each pair of precedence-constrained activities are derived. These bounds are used to reduce the number of variables in the model and to generate cuts that tighten the linear programming relaxation. The solution process is accelerated by an adaptive branching scheme in conjunction with a bound-tightening scheme that is called iteratively after branching. To find good feasible solutions in the early stages of the computations, a high-level neighborhood search strategy known as local branching is included. Here, a neighborhood of a feasible solution is defined by the linear inequalities in the ILP model and is searched first. As implemented, the full algorithm is exact rather than heuristic in nature. Numerical results are reported for 20- and 30-activity benchmark problems. These are the largest instances available and are generally viewed to be notoriously difficult. Up until now, there were no confirmed optimal solutions for any of the 552 30-activity instances. We were able to find several better solutions and to show that at least 506 are optimal.

Related Organizations
Keywords

Discrete location and assignment, branch and cut, Programming involving graphs or networks, multiple resources, project scheduling, integer linear programming

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    97
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
97
Top 10%
Top 10%
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!