Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Korean So...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Korean Society for Clinical Pharmacology and Therapeutics
Article . 2012 . Peer-reviewed
License: CC BY NC
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Statistical Analysis System of Spontaneous Adverse Drug Reaction Reports

Authors: Sira Kim; Boram Wang; Jungsun Lee; Bori Kim; Hyeno La; Young Min Park; Inyoung Choi;

Statistical Analysis System of Spontaneous Adverse Drug Reaction Reports

Abstract

Background: Spontaneous adverse drug reaction (ADR) reporting data has been used for safety of post-market drug surveillance. A system has been required that is able to detect signals associated with drugs by analyzing the collected ADR data. Methods: We developed the web-based automated analysis system (ADR-detector). We used the data which reported ADR spontaneously between March 2009 and December 2010 to Korean Food and Drug Administration. We used 3 statistical indicators for evaluating ADR signals: proportional reporting ratio (PRR), reporting odds ratio (ROR), and information component (IC). The ADR reports which were detected as significant signals based on the indicators have been reviewed. Results: Among 153,774 reports, 9,955 cases were related to 4 analgesics which were most frequently reported analgesic drugs during the study period. The numbers of ADR reports associated with each drug are as follow: 5,623 reports in tramadol (56.5 %), 1,720 reports in fentanyl (17.3 %), 1,463 reports in tramadol-combination (14.7 %), and 1,149 reports in ketorolac (11.5 %). Top 5 ADR were nausea (3,351 reports – 33.7 %), vomiting (1,755 reports – 17.6 %), dizziness (1,130 – 11.4 %), rash (412 reports – 4.1 %), and pruritus (354 reports – 3.6 %). 6,674 ADR reports were significant based on PRR and ROR, and 336 reports were significant based on IC. Conclusion: By using the automated analysis system, not only statisticians but also general researchers are able to analyze ADR signals in real-time. Also ADR-detector would provide rapid review and cross-check of ADR.

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
hybrid