
doi: 10.1263/jbb.106.199
pmid: 18804065
Rhodococcus opacus B-4 is a benzene-tolerant bacterium which was isolated from a gasoline-contaminated soil sample. We previously demonstrated that this organism was able to survive and exhibit biocatalytic activity in anhydrous organic solvents for at least 5 d. In the present study, we cloned the alkB1 and alkB2 genes encoding alkane hydroxylases from R. opacus B-4. Heterologous expression of the alkB1 and alkB2 genes in Escherichia coli JM109 showed that they encode functional alkane hydroxylases with a substrate range of C(5)-C(16). Promoters of the alkB1 and alkB2 genes, designated P(alkB1) and P(alkB2), respectively, were examined for activity in anhydrous bis (2-ethylhexyl) phthalate (BEHP) containing C(5)-C(16)n-alkanes. Two recombinant plasmids, pP(alkB1)EGFP and pP(alkB2)EGFP, were constructed by inserting the egfp gene downstream of P(alkB1) and P(alkB2), respectively and transformed into R. opacus B-4. Resting cells of R. opacus B-4 (pP(alkB1)EGFP) showed greater levels of EGFP fluorescence in anhydrous BEHP than in 0.85% NaCl, when C(8)-C(16)n-alkanes were supplied as an inducer. Furthermore, n-alkane inducibility of P(alkB1) activity in anhydrous BEHP was noticeably different from that in 0.85% NaCl. This paper presents the first evidence that bacteria can express their genes in essentially anhydrous organic solvents.
DNA, Bacterial, Base Sequence, Escherichia coli Proteins, Polymerase Chain Reaction, Fluorescence, Culture Media, Mixed Function Oxygenases, Genes, Bacterial, Sequence Homology, Nucleic Acid, Escherichia coli, Solvents, Rhodococcus, Cloning, Molecular, Promoter Regions, Genetic
DNA, Bacterial, Base Sequence, Escherichia coli Proteins, Polymerase Chain Reaction, Fluorescence, Culture Media, Mixed Function Oxygenases, Genes, Bacterial, Sequence Homology, Nucleic Acid, Escherichia coli, Solvents, Rhodococcus, Cloning, Molecular, Promoter Regions, Genetic
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 31 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
