Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ The Japanese Journal...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
The Japanese Journal of Pharmacology
Article . 1996 . Peer-reviewed
License: CC BY NC ND
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Immunosuppression in Organ Transplantation

Authors: T, Oka; N, Yoshimura;

Immunosuppression in Organ Transplantation

Abstract

The immunological barrier remains the major obstacle to the widespread use of transplantation as a replacement therapy for terminal organ failure. Since the first successful renal transplant, performed by Hume et al. (1952), there has been an elusive search for agents that can render the immune mechanism unresponsive to the specific alloantigen stimulus of the engrafted organ, while sparing non-specific host resistance. Immunosuppressive therapies in organ transplantation can be divided into the following four main classes: chemical (pharmaceutical), biological (immunological), physical (radiological) and surgical. Of these, chemical agents (drugs) have continued to play a principal role. The discovery of new immunosuppressive drugs such as corticosteroids, ciclosporin, azathioprine and FK506 have been epoch-making discoveries at each stage in the history of clinical organ transplantation. The recent immunosuppressants were designed to focus their action selectively on T and/or B cells by inhibiting cytokine synthesis (ciclosporin, FK506), cytokine action (rapamycin), or cell differentiation (15-deoxyspergualin) pathways, rather than to act on immune systems in a non-selective fashion. At the present time, however, there is no single panacea. To achieve the maximum preventive and therapeutic effects with the minimum toxicity, two or more immunosuppressive drugs are used appropriately in combination, taking the mechanisms of action of each into consideration.

Keywords

Graft Rejection, Structure-Activity Relationship, Adrenal Cortex Hormones, Transplantation Immunology, T-Lymphocytes, Azathioprine, Cyclosporine, Humans, Immunosuppressive Agents

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    21
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
21
Average
Top 10%
Top 10%
gold