Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Folia Pharmacologica...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Folia Pharmacologica Japonica
Article . 2001 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Perspectives on tetrahydrobiopterin research.

Authors: C, Sumi-Ichinose; M, Ohtsuki; H, Shiraishi; T, Nomura;

Perspectives on tetrahydrobiopterin research.

Abstract

Tetrahydrobiopterin ((6R)-L-erythro-tetrahydrobiopterin, BH4) is de novo synthesized from GTP. Enzymes involved in its synthesis are the rate limiting enzyme GTP cyclohydrolase I, 6-pyruvoyl tetrahydropterin synthase (PTPS) and sepiapterin reductase. Abnormalities in the metabolism of BH4 have been demonstrated in some diseases affecting the central nervous systems such as atypical phenylketonuria, hereditary progressive dystonia (Segawa's disease). Furthermore, BH4 has been shown to be involved in vascular protection. It is suggested that the dysfunction of endothelial BH4 leads to atherosclerosis. Recently we established BH4-deficient mice by disrupting the PTPS gene to investigate the effects of BH4 depletion on the animals and the involvement of BH4 in regulating biological functions including neural systems. Investigation utilizing this model animal can contribute to the development of new therapeutic strategies toward various diseases involving neurological and vascular systems. Pterin derivatives other than biopterin may also be involved in the regulation of a variety of biological functions. We found that ciliated protozoan Tetrahymena pyriformis synthesizes tetrahydromonapterin, isomer of BH4, and its levels alter according to the progress of the cell cycle. How pterin derivatives are related to the human physiology and diseases is an interesting subject of investigation.

Related Organizations
Keywords

Mice, Knockout, Biopterins, Mice, Arteriosclerosis, Central Nervous System Diseases, Animals, Humans, Phosphorus-Oxygen Lyases, GTP Cyclohydrolase

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
bronze