Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Circulation Journalarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Circulation Journal
Article . 2007 . Peer-reviewed
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Phenotypic Heterogeneity of Marfan-Like Connective Tissue Disorders Associated With Mutations in the Transforming Growth Factor-.BETA. Receptor Genes

Authors: Naoyuki Yokoyama; Takayuki Morisaki; Tsuyoshi Yoshimuta; Hiroko Morisaki; Hiroshi Nonogi; Hitoshi Ogino; Shingo Sakamoto; +3 Authors

Phenotypic Heterogeneity of Marfan-Like Connective Tissue Disorders Associated With Mutations in the Transforming Growth Factor-.BETA. Receptor Genes

Abstract

Mutations in the genes for transforming growth factor-beta receptor (TGFBR) have been identified in patients with Marfan syndrome (MFS) and Marfan-like connective tissue disorders. There are several syndromes associated with mutations in TGFBR genes, including Loeys-Dietz syndrome (LDS), MFS2, Furlong syndrome, and Shprintzen-Goldberg syndrome. However, with the exception of the first report by Loeys et al, the phenotypic features of patients with TGFBR gene mutations have not been precisely reported.A total of 18 patients suspected of having MFS were recruited and 7 were diagnosed with MFS and mutations in FBN1. Among the remaining 11 patients, 1 patient had mutations in TGFBR1, 2 had mutations in TGFBR2, and 1 had mutations in COL3A1. The clinical manifestations of the 3 patients with TGFBR gene mutations were examined according to the list of 36 clinical features described in the first report by Loeys et al. The clinical manifestations of these 3 patients differed from those previously observed in patients with MFS2, Furlong syndrome, and Shprintzen-Goldberg syndrome. Thus, the most probable diagnosis of these 3 patients was LDS, despite the fact that they presented with only a fraction of the 36 clinical features associated with LDS.Although the number of the patients was limited, the findings support the notion that mutations in the TGFBR gene may be associated with greater phenotypic heterogeneity than previously reported.

Keywords

Adult, Male, Fibrillin-1, DNA Mutational Analysis, Microfilament Proteins, Receptor, Transforming Growth Factor-beta Type I, Receptor, Transforming Growth Factor-beta Type II, Protein Serine-Threonine Kinases, Fibrillins, Marfan Syndrome, Collagen Type III, Phenotype, Mutation, Humans, Female, Connective Tissue Diseases, Receptors, Transforming Growth Factor beta

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    45
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
45
Top 10%
Top 10%
Top 10%
gold