
doi: 10.1248/cpb.48.1611
pmid: 11086886
A series of 5H-dibenz[b,f]azepine derivatives was prepared and evaluated for binding affinities to muscarinic receptors in vitro. Among them, compound 8 showed a high affinity for human recombinant M2 receptors (Ki=2.6 nm), a low affinity for M4 receptors (39-fold less than for M2 receptors) and a very low affinity for M1 and M3 receptors (119- and 112-fold less than for M2 receptors, respectively). The high M2 selectivity of 8 may be attributed to the olefinic bond of the azepine ring. Functional experiments showed 8 to be a competitive antagonist with high affinity to the cardiac (pA2=7.1) and low affinity to the intestinal muscarinic receptors (IC50=0.54 microM). In vivo experiments confirmed the in vitro M, selectivity of 8. Acetylcholine-induced bradycardia was dose-dependently antagonized in rats after both intravenous and intraduodenal administration of 8. In rats, cholinergic functions mediated by M1 or M3 receptors (salivary secretion, pupil diameter, gastric emptying, intestinal transit time) were not affected by the oral administration of 8 even at doses as high as 30 times the antibradycardic effective dose. Furthermore, 8 had no analgesic activity in mice, indicating poor central nervous system penetration. In dogs, nocturnal bradycardia was dose-dependently inhibited by the oral route with a duration of action of about 24 h. Compound 8 appears to be a promising cardioselective antimuscarinic agent for the treatment of dysfunctions of the cardiac conduction system such as sinus or nodal bradycardia ("sick-sinus syndrome") and atrioventricular block.
Male, Dose-Response Relationship, Drug, Guinea Pigs, Hemodynamics, Heart, CHO Cells, Muscarinic Antagonists, Benzazepines, In Vitro Techniques, Mice, Dogs, Gastric Emptying, Blood-Brain Barrier, Heart Rate, Cricetinae, Bradycardia, Animals, Humans, Female, Gastrointestinal Transit
Male, Dose-Response Relationship, Drug, Guinea Pigs, Hemodynamics, Heart, CHO Cells, Muscarinic Antagonists, Benzazepines, In Vitro Techniques, Mice, Dogs, Gastric Emptying, Blood-Brain Barrier, Heart Rate, Cricetinae, Bradycardia, Animals, Humans, Female, Gastrointestinal Transit
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 10 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
