Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Cell Structure and F...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Cell Structure and Function
Article . 2003 . Peer-reviewed
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

Vesicle-mediated Protein Transport Pathways to the Vacuole in Schizosaccharomyces pombe

Authors: Kaoru, Takegawa; Tomoko, Iwaki; Yasuko, Fujita; Tomotake, Morita; Akira, Hosomi; Naotaka, Tanaka;

Vesicle-mediated Protein Transport Pathways to the Vacuole in Schizosaccharomyces pombe

Abstract

The vacuole of Saccharomyces cerevisiae plays essential roles not only for osmoregulation and ion homeostasis but also down-regulation (degradation) of cell surface proteins and protein and organellar turnover. Genetic selections and genome-wide screens in S. cerevisiae have resulted in the identification of a large number of genes required for delivery of proteins to the vacuole. Although the complete genome sequence of the fission yeast Schizosaccharomyces pombe has been reported, there have been few reports on the proteins required for vacuolar protein transport and vacuolar biogenesis in S. pombe. Recent progress in the S. pombe genome project of has revealed that most of the genes required for vacuolar biogenesis and protein transport are conserved between S. pombe and S. cerevisiae. This suggests that the basic machinery of vesicle-mediated protein delivery to the vacuole is conserved between the two yeasts. Identification and characterization of the fission yeast counterparts of the budding yeast Vps and Vps-related proteins have facilitated our understanding of protein transport pathways to the vacuole in S. pombe. This review focuses on the recent advances in vesicle-mediated protein transport to the vacuole in S. pombe.

Related Organizations
Keywords

Glycosylation, Saccharomyces cerevisiae Proteins, Vesicular Transport Proteins, Membrane Proteins, Saccharomyces cerevisiae, Protein Sorting Signals, Spores, Fungal, Phosphatidylinositol 3-Kinases, Phosphotransferases (Alcohol Group Acceptor), Protein Transport, Schizosaccharomyces, Vacuoles, Schizosaccharomyces pombe Proteins, SNARE Proteins, Transport Vesicles

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    49
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
49
Top 10%
Top 10%
Top 10%
gold