
doi: 10.1247/csf.25.291
pmid: 11235897
In spores of Dictyostelium discoideum three actin filaments are bundled to form a novel tubular structure and the tubules are then organized into rods. These tubular structures we will term actin tubules. Actin tubules are reconstructed from the supernatant of spore homogenates, while the usual actin filaments were bundled after incubation of supernatants from growing cells. Alpha-actinin, ABP-120 and EF-1alpha are not essential for rod formation. Cofilin is a component of the cytoplasmic rods but few cofilin molecules are included in the nuclear rods. The viability of spores lacking actin rods is very low, and the spore shape is round instead of capsular. The rods can be fragmented by pressure, indicating that the rods may be effective in absorbing physical pressure. The complex organization of actin filaments, actin tubules and rods may be required for spores to achieve complete dormancy and maintain viability.
Spores, Actin Cytoskeleton, Actin Depolymerizing Factors, Microfilament Proteins, Animals, Dictyostelium, Actins, Cytoskeleton
Spores, Actin Cytoskeleton, Actin Depolymerizing Factors, Microfilament Proteins, Animals, Dictyostelium, Actins, Cytoskeleton
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 20 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
